Competitive Router Scheduling with Structured Data
نویسندگان
چکیده
We consider the task of transmitting structured information over bounded-capacity links. Our information model is a stream of basic units called superpackets that are broken into k packets each. To model the possible structure and redundancy of the superpackets, we assume that for each superpacket there is a collection of minimal subsets of packets whose delivery makes the superpacket useful. This very general model encompasses, for example, MPEG streams, where one can think of a group of pictures (GoP) as a superpacket. The fundamental difficulty is that networks can forward only the primitive packets, but applications can use only superpackets, and thus if no minimal subset is delivered, the whole superpacket becomes useless. Our aim is to maximize goodput (number of useful superpackets) in the face of overloaded communication links, where we are forced to drop some packets. Specifically, we assume that an arbitrary stream of packets arrives at a router with multiple bounded-capacity outgoing links. An on-line algorithm needs to decide, for each superpacket, which outgoing link to use (all packets of the same superpacket must use the same link) and, in case of an overload at a link, which packets to drop and which to transmit so as to maximize goodput. We analyze a simple randomized competitive algorithm for the general case and provide a nearly matching lower bound on the competitive ratio of any randomized on-line algorithm.
منابع مشابه
Enhancing router QoS through job scheduling with weighted shortest processing time-adjusted
Most routers on the Internet employ a 2rst-in-2rst-out (FIFO) scheduling rule to determine the order of serving data packets. This scheduling rule does not provide quality of service (QoS) with regards to the di6erentiation of services for data packets with di6erent service priorities and the enhancement of routing performance. We develop a scheduling rule called Weighted Shortest Processing Ti...
متن کاملOnline Packet Scheduling with Bounded Delay and Lookahead
We study the online bounded-delay packet scheduling problem (PacketScheduling), where packets of unit size arrive at a router over time and need to be transmitted over a network link. Each packet has two attributes: a non-negative weight and a deadline for its transmission. The objective is to maximize the total weight of the transmitted packets. This problem has been well studied in the litera...
متن کاملOnline Packet Routing on Linear Arrays and Rings
In contrast to classical offline k-k routing, the online packet routing problem allows for an arbitrary number of packets with arbitrary end points and release times. We study this problem on linear array and ring networks. We generalize an earlier result for the offline problem by showing that Farthest First (FF) scheduling is optimal with respect to makespan on linear arrays. We also show tha...
متن کاملA Mathematical Model and Grouping Imperialist Competitive Algorithm for Integrated Quay Crane and Yard Truck Scheduling Problem with Non-crossing Constraint
In this research, an integrated approach is presented to simultaneously solve quay crane scheduling and yard truck scheduling problems. A mathematical model was proposed considering the main real-world assumptions such as quay crane non-crossing, precedence constraints and variable berthing times for vessels with the aim of minimizing vessels completion time. Based on the numerical results, thi...
متن کاملScheduling of a flexible flow shop with multiprocessor task by a hybrid approach based on genetic and imperialist competitive algorithms
This paper presents a new mathematical model for a hybrid flow shop scheduling problem with multiprocessor tasks in which sequence dependent set up times and preemption are considered. The objective is to minimize the weighted sum of makespan and maximum tardiness. Three meta-heuristic methods based on genetic algorithm (GA), imperialist competitive algorithm (ICA) and a hybrid approach of GA a...
متن کامل